| u | = √(2² + (-1²)) = √5
| v | = √ ( 1² + (-8)² = √65
cos (u,v) = ( u * v ) / (| u | * | v |) =
(2 * 1 + ( -1 ) * ( - 8 )) / √5 √ 65 = (2 + 8) / √5 √65 = 10 / (√5 √ 65 )
The length of a larger diagonal:
d 1² = | u |² + 2 |u| |v| + | v |² = 5 + (2 √5 √65 * 10 / √5 √65 )+65
d 1² = 70 + 20 = 90
d 1 = √ 90 = 3√10
d 2² = 70 - 20 = 50
d 2 = √50 = 5√2
Answer:
The lengths of the diagonals are: 3√10 and 5√2 .
Answer:
First option: 
Step-by-step explanation:
The missing graph is attached.
The equation of the line in Slope-Intercept form is:

Where "m" is the slope and "b" is the y-intercept.
We can observe that:
1. Both lines have the same y-intercept:

2. The lines are solid, then the symbol of the inequality must be
or
.
3. Since both shaded regions are below the solid lines, the symbol is:

Based on this and looking at the options given, we can conclude that the graph represents the following system of inequalities:

Answer: 19
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
The equations are
● 4x + 2y = 10 (1)
● 4x - 2y = -10 (2)
● 4x + 2y = 10
Add - 4x to both sides
● 4x + 2y -4x = 10 -4x
● 2y = 10 -4x
Divide both sides by 2
● 2y/2 = (10 - 4x)/2
● y = 5 - 2x
● y = -2x + 5 (1)
● 4x - 2y = -10
Add -4x to both sides
● 4x -2y -4x = -10 - 4x
● -2y = -10 - 4x
Divide both sides by -2
● -2y/-2 = (-10 -4x)/-2
● y = 10 + 2x
● y = 2x + 5 (2)
So the equation are
● y = 2x + 5
● y = -2x + 5
Graph them
The lines intersect at (0,5) but aren't perpendicular
So the answer is d
Answer:

And we can find the individual probabilities like this:
And adding we got:

Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Solution to the problem
For this case we want to find this probability:

And we can find the individual probabilities like this:
And adding we got:
