There are infinite many planes that contain each line and point
<h3>How to determine the number of planes?</h3>
The given parameters are given as:
- Line KL and G
- Line JI and G
As a general rule, a line and a point can be used to draw as many planes as possible
This means that there are infinite many planes possible
Hence, there are infinite many planes that contain each line and point
Read more about planes and points at:
brainly.com/question/14366932
#SPJ1
Answer:
a) 5000 m²
b) A(x) = x(200 -2x)
c) 0 < x < 100
Step-by-step explanation:
b) The remaining fence, after the two sides of length x are fenced, is 200-2x. That is the length of the side parallel to the building. The product of the lengths parallel and perpendicular to the building is the area of the playground:
A(x) = x(200 -2x)
__
a) A(50) = 50(200 -2·50) = 50·100 = 5000 . . . . m²
__
c) The equation makes no sense if either length (x or 200-2x) is negative, so a reasonable domain is (0, 100). For x=0 or x=100, the playground area is zero, so we're not concerned with those cases, either. Those endpoints could be included in the domain if you like.
Okay I think there has been a transcription issue here because it appears to me there are two answers. However I can spot where some brackets might be missing, bear with me on that.
A direct variation, a phrase I haven't heard before, sounds a lot like a direct proportion, something I am familiar with. A direct proportion satisfies two criteria:
The gradient of the function is constant s the independent variable (x) varies
The graph passes through the origin. That is to say when x = 0, y = 0.
Looking at these graphs, two can immediately be ruled out. Clearly A and D pass through the origin, and the gradient is constant because they are linear functions, so they are direct variations.
This leaves B and C. The graph of 1/x does not have a constant gradient, so any stretch of this graph (to y = k/x for some constant k) will similarly not be direct variation. Indeed there is a special name for this function, inverse proportion/variation. It appears both B and C are inverse proportion, however if I interpret B as y = (2/5)x instead, it is actually linear.
This leaves C as the odd one out.
I hope this helps you :)
Answer:
x=2
Step-by-step explanation:
9x+11=29
9x=29-11
9x=18
x=2