Answer:
p = 8N/mm2
Explanation:
given data ;
diameter of cylinder = 150 mm
thickness of cylinder = 6 mm
maximum shear stress = 25 MPa
we know that
hoop stress is given as =
axial stress is given as =
maximum shear stress = (hoop stress - axial stress)/2
putting both stress value to get required pressure


t = 6 mm
d = 150 mm
therefore we have pressure
p = 8N/mm2
Answer:

Explanation:
Given that,
The current in the loop, I = 2 A
The radius of the loop, r = 0.4 m
We need to find the magnetic field at a distance 0.09 m along the axis and above the center of the loop. The formula for the magnetic field at some distance is given as follows :

Put all the values,

So, the required magnetic field is equal to
.
Answer:
v(t) = 27 units
Explanation:
The function s(t) represents the position of an object at time t moving along a line such that,

and

We need to find the average velocity of the object over the interval of time [2,6]. The velocity of the object is equal to the total distance divided by time. It is given by :


v(t) = 27 units
So, the average velocity of the object is 27 units. Hence, this is the required solution.
If you're willing to consider fractions or decimals,
then there are an infinite number of answers.
Like (2.5 x 160), and (15 x 26-2/3).
If you want to stick to only whole numbers,
then these 8 combinations do:
1, 400
2, 200
4, 100
5, 80
8, 50
10, 40
16, 25
20, 20
Solution :
Given data is :
Density of the milk in the tank, 
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank, 
Therefore, the pressure difference between the two points is given by :

Since the tank is completely filled with milk, the vertical acceleration is 

Therefore substituting, we get




Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.