Answer:
Horizontal distance = 0 m and 6 m
Step-by-step explanation:
Height of a rider in a roller coaster has been defined by the equation,
y = 
Here x = rider's horizontal distance from the start of the ride
i). 

![=\frac{1}{3}[x^{2}-2(3x)+9-9+24]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5Bx%5E%7B2%7D-2%283x%29%2B9-9%2B24%5D)
![=\frac{1}{3}[(x^{2}-2(3x)+9)+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x%5E%7B2%7D-2%283x%29%2B9%29%2B15%5D)
![=\frac{1}{3}[(x-3)^2+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x-3%29%5E2%2B15%5D)

ii). Since, the parabolic graph for the given equation opens upwards,
Vertex of the parabola will be the lowest point of the rider on the roller coaster.
From the equation,
Vertex → (3, 5)
Therefore, minimum height of the rider will be the y-coordinate of the vertex.
Minimum height of the rider = 5 m
iii). If h = 8 m,


(x - 3)² = 9
x = 3 ± 3
x = 0, 6 m
Therefore, at 8 m height of the roller coaster, horizontal distance of the rider will be x = 0 and 6 m
There is no picture attached so not sure what you are talking about
Answer: The answer is (d) 
Step-by-step explanation: Given equation to be factored is

The given expression is quadratic, so we can factor it into two linear factors, by using the following factorisation rule.

So, the given equation can be factorised using the above rule. The factorisation is as follows.

Thus, the correct option is (d).
unit rate: $7.45/2.5 lbs of steak
--------------------------------
reduced:
7.45 dollars /2.5 pounds
GCF=0.5
7.45/0.5=14.9$
2.5/0.5=5
unit rate:
$14.9/5 pounds