Answer:
C. 2
Step-by-step explanation:
Cohen's d is a parameter used to express the standardised difference between two means. It is defined as the difference between the means divided by the pooled standard deviation.
In this case, the difference between both means (M2-M1) is 8. As for the pooled standard deviation, simply take the square root of the given pooled variance:

Therefore, the value of Cohen's d (d) is:

Answer:
It is tomato plant
Step-by-step explanation:
- The independent variable is the variable the experimenter changes or controls and is assumed to have a direct effect on the dependent variable. - - - The dependent variable is the variable being tested and measured in an experiment, and is 'dependent' on the independent variable.
Dividing by a fraction is equivalent to multiply by its reciprocal, then:

Now, we need to express the quadratic polynomials using their roots, as follows:

where y1 and y2 are the roots.
Applying the quadratic formula to the first polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{7\pm\sqrt[]{(-7)^2-4\cdot3\cdot(-6)}}{2\cdot3} \\ y_{1,2}=\frac{7\pm\sqrt[]{121}}{6} \\ y_1=\frac{7+11}{6}=3 \\ y_2=\frac{7-11}{6}=-\frac{2}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B%28-7%29%5E2-4%5Ccdot3%5Ccdot%28-6%29%7D%7D%7B2%5Ccdot3%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B121%7D%7D%7B6%7D%20%5C%5C%20y_1%3D%5Cfrac%7B7%2B11%7D%7B6%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B7-11%7D%7B6%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the second polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot2\cdot(-3)}}{2\cdot2} \\ y_{1,2}=\frac{-1\pm\sqrt[]{25}}{4} \\ y_1=\frac{-1+5}{4}=1 \\ y_2=\frac{-1-5}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot2%5Ccdot%28-3%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B25%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B5%7D%7B4%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-5%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the third polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{3\pm\sqrt[]{(-3)^2-4\cdot2\cdot(-9)}}{2\cdot2} \\ y_{1,2}=\frac{3\pm\sqrt[]{81}}{4} \\ y_1=\frac{3+9}{4}=3 \\ y_2=\frac{3-9}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B%28-3%29%5E2-4%5Ccdot2%5Ccdot%28-9%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B81%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B3%2B9%7D%7B4%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B3-9%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the fourth polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot1\cdot(-2)}}{2\cdot1} \\ y_{1,2}=\frac{-1\pm\sqrt[]{9}}{2} \\ y_1=\frac{-1+3}{2}=1 \\ y_2=\frac{-1-3}{2}=-2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot1%5Ccdot%28-2%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B9%7D%7D%7B2%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B3%7D%7B2%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-3%7D%7B2%7D%3D-2%20%5Cend%7Bgathered%7D)
Substituting into the rational expression and simplifying: