<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>Here's</em><em> </em><em>your</em><em> </em><em>answer</em><em>:</em>
<h3>
<em><u>Domain</u></em><em><u>:</u></em><em><u>{</u></em><em><u>(</u></em><em>0</em><em>,</em><em>2</em><em>,</em><em>3</em><em>,</em><em>8</em><em>)</em><em>}</em></h3><h3>
<em>Range</em><em>:</em><em>{</em><em>(</em><em>2</em><em>,</em><em>3</em><em>,</em><em>7</em><em>,</em><em>9</em><em>)</em><em>}</em></h3>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>. </em><em> </em><em> </em><em> </em><em> </em>
<h3>
<em>have</em><em> </em><em>a</em><em> </em><em>great</em><em> </em><em>day</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em></h3>
Answer: The required solution is 
Step-by-step explanation:
We are given to solve the following differential equation :

where k is a constant and the equation satisfies the conditions y(0) = 50, y(5) = 100.
From equation (i), we have

Integrating both sides, we get
![\int\dfrac{dy}{y}=\int kdt\\\\\Rightarrow \log y=kt+c~~~~~~[\textup{c is a constant of integration}]\\\\\Rightarrow y=e^{kt+c}\\\\\Rightarrow y=ae^{kt}~~~~[\textup{where }a=e^c\textup{ is another constant}]](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdy%7D%7By%7D%3D%5Cint%20kdt%5C%5C%5C%5C%5CRightarrow%20%5Clog%20y%3Dkt%2Bc~~~~~~%5B%5Ctextup%7Bc%20is%20a%20constant%20of%20integration%7D%5D%5C%5C%5C%5C%5CRightarrow%20y%3De%5E%7Bkt%2Bc%7D%5C%5C%5C%5C%5CRightarrow%20y%3Dae%5E%7Bkt%7D~~~~%5B%5Ctextup%7Bwhere%20%7Da%3De%5Ec%5Ctextup%7B%20is%20another%20constant%7D%5D)
Also, the conditions are

and

Thus, the required solution is 
Answer: last option.
Step-by-step explanation:
To apply the Distributive property, remember that:

Then, applying this, you get:

Combine like terms means that you need to add the like terms.
Therefore, you get:

You can observe that the expression obtained matches with the expression provided in the last option.
If your asking for a standard deck of cards the probability is 1/8