The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Step-by-step explanation:
Assume that adults have IQ scores that are normally distributed with a mean of mu equals μ = 105 and a standard deviation sigma equals σ = 15
We need to find the probability that a randomly selected adult has an IQ less than 135
For the probability that X < b;
- Convert b into a z-score using z = (X - μ)/σ, where μ is the mean and σ is the standard deviation
- Use the normal distribution table of z to find the area to the left of the z-value ⇒ P(X < b)
∵ z = (X - μ)/σ
∵ μ = 105 , σ = 15 and X = 135
∴ 
- Use z-table to find the area corresponding to z-score of 2
∵ The area to the left of z-score of 2 = 0.97725
∴ P(X < 136) = 0.97725
The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Learn more:
You can learn more about probability in brainly.com/question/4625002
#LearnwithBrainly
Answer:
2110
Step-by-step explanation:
4100-1990=2110
Answer:
Well if the angle is drawn to scale you can use a protractor.
But if it’s not you need to divide the known length by the sine of its opposite angle.
So find the sine of the angle opposite to the known length.
Give me a second and I will have you’re answer