Answer:
m ∠JPN = 131°
Step-by-step explanation:
m ∠JPL = m ∠MPK Vertical angles are =
7x + 19 = 11x -17 Substitution
- 4x = -36 Algebra: Solving for x
x = 9 Algebra: Solving for x
m ∠JPL = 82° Substitution x = 9 into m ∠JPL = 7x +19
m ∠JPL + m ∠LPK = 180° Definition of linear pair/supplement
angles = 180°
82° + m ∠LPK = 180° Substitution
m ∠LPK = 98° Algebra
m ∠LPK = m ∠LPN + m ∠NPK Angle addition Theorem
PN bisects ∠LPK Given
m ∠LPN = m ∠NPK Definition of angle bisector
98 ° = 2 ( m ∠LPN) Substitution
m ∠LPN = 49° Algebra
m ∠JPN = m ∠JPL + m ∠LPN Angle Addition
m ∠JPN = 82° + 49° Substitution
m ∠JPN = 131° Addition
Answer:
dookey boodey
Step-by-step explanation:
Answer:
x= (-3 +- sqrt3)/2
Step-by-step explanation:
2x² - 15x + 7
(2x - 1)(2x-14)
(2x - 1)(x - 7) x= 1/2 or 7
Use the Multiplication Distributive Property: (xy)^a = x^ay^a
3√64 3√a^6 3√b^7 3√c^9
Calculate
4 3√a^6 3√b^7 3√c^9
Use this rule: (x^a)^b = x^ab
4a^6/3 3√b^7 3√c^9
Simplify 6/3 to 2
4a^2 3√b^7 3√c^9
Use this rule: (x^a)^b = x^ab
4a^2b^7/3 3√c^9
Use this rule: (x^a) = x^ab
4a^2b^7/3 c^9/3
Simplify 9/3 to 3
<h2><u>
Answer: B. 4a^2b^2c^3(3√b)</u></h2>
<u><em>Question Number 2.</em></u>
Use this rule: √ab = √a√b√120√x
Simplify √120 to 2√30
2√30√x
Simplify
<h2><u>
Answer: A. 2√30x</u></h2>