Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

Answer:
x = 5
Step-by-step explanation:
60 + 42.95x = 25 + 49.95x
60 + 42.95(5) = 25 + 49.95(5)
42.95 * 5 = 214.75
214.75 + 60 = 274.75
49.95 * 5 = 249.75
249.75 + 25 = 274.75
Hope this helped!:))
3p : 8s
1p : (8/3)s
So for every one 'p' there is (8/3) 's'
Ratio of p to s is 1 : 8/3
(a) they spent $24.56 in total (to show ur work, you multiply 6.17(4)
(b) they spent $50.05 on each light (to show ur work, you divide 200.20/4)
(c) they can spend $75.24 more (to show ur work, you do 300-224.76
i’m so sorry i cant show the work but i hope this helps!