(5) Find the Laplace transform of the following time functions: (a) f(t) = 20.5 + 10t + t 2 + δ(t), where δ(t) is the unit impul
se function (b) f(t) = e −t + 4e −4t + te−3t
1 answer:
Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

You might be interested in
Answer
4+(-x),-x+4
Step-by-step explanation:
52.10-49.62=2.48
2.48/49.62 x 100 = 4.998%
The percentage increase in the price is approximately 5 %
Answer:
i think the answer is 99 im not completely sure though
but i hope this helps