Area=length*width
let the sides perpendicular to the river be x
then the side parallel to the river is 4,700-2x
A(x)=x(4700-2x)
A(x)=4700x-2x^2
This a quadratic function with a=-2 and b=4700
thus
Maximum area occurs where x=-b/2a=-4700(-2*2)=1,175 ft
length=4700-2(1175)=2,350 ft
Answer:
-19^5 or -19 to the fifth
<span>The best answer for this question would be 70, 70, 70. This is because the question does not specify which two numbers will be taken to create the maximum. If, for example it was known that the first two numbers would be added, we would do better with 105, 105, 0 as the first two numbers would then add up to 210.</span>
Answer:
Step-by-step explanation:
![\sqrt[5]{ {x}^{5} {y}^{5} } \\ \\ = ({x}^{5} )^{ \frac{1}{5} } \sqrt[5]{ {y}^{5} } \\ \\ = {x}^{5 \times \frac{1}{5} } \times \sqrt[5]{ {y}^{5} } \\ \\ = x \: \sqrt[5]{ {y}^{5} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B%20%7Bx%7D%5E%7B5%7D%20%7By%7D%5E%7B5%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%28%7Bx%7D%5E%7B5%7D%20%29%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5Csqrt%5B5%5D%7B%20%20%7By%7D%5E%7B5%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B5%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%20%5Ctimes%20%5Csqrt%5B5%5D%7B%20%7By%7D%5E%7B5%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20x%20%5C%3A%20%20%5Csqrt%5B5%5D%7B%20%7By%7D%5E%7B5%7D%20%7D%20)
Ahemmmm what is 3/8 of 48? well, is just their product.