Answer:
6
Step-by-step explanation:
First, subtract 9 on both sides:
d+9-9=15-9
d=6
Hope this helped!
Answer:
<h2>
Therefore the length of a side of a cube is ![\sqrt[3]{64}\ or\ 4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%5C%20or%5C%204)
</h2>
Step-by-step explanation:
The volume of a cube is expressed as L³ where L is the length of each side of the cube.
Given volume of a cube = 64in³
On substituting;
64 = L³
Taking the cube root of both sides to determine L we have;
![\sqrt[3]{64} = (\sqrt[3]{L})^{3}\\\sqrt[3]{64} = L\\L=4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%20%3D%20%28%5Csqrt%5B3%5D%7BL%7D%29%5E%7B3%7D%5C%5C%5Csqrt%5B3%5D%7B64%7D%20%3D%20L%5C%5CL%3D4)
Therefore the length of a side of a cube is ![\sqrt[3]{64}\ or\ 4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%5C%20or%5C%204)
Answer:
Thanks for asking!
Step-by-step explanation:
The answer is D
Answer:
D. Minimum at (3, 7)
Step-by-step explanation:
We can add and subtract the square of half the x-coefficient:
y = x^2 -6x +(-6/2)^2 +16 -(-6/2)^2
y = (x -3)^2 +7 . . . . . simplify to vertex form
Comparing this to the vertex for for vertex (h, k) ...
y = (x -h)^2 +k
We find the vertex to be ...
(3, 7) . . . . vertex
The coefficient of x^2 is positive (+1), so the parabola opens upward and the vertex is a minimum.
Answer:
In the pic
Step-by-step explanation:
If you have any questions about the way I solved it, don't hesitate to ask me in the comments below =)