The product means you multiply, so:
-y × 6x = -6xy
-y × 4y = -4y²
x × 6x = 6x²
x × 4y = 4xy
= -2xy - 4y² + 6x
I hope this helps!
Answer: 13 and 31 sorry for it being rog the first time
Step-by-step explanation: BRAINLIEST PLZ
The factors of 56: 1; 2; 4; 7; 8; 14; 28; 56
The factors of 84: 1; 2; 3; 4; 6; 14; 28; 42; 84
GCF(56; 84) = 28
Answer:
36
Step-by-step explanation:
Compare what you have to the square ...
(a +b)^2 = a^2 +2ab +b^2
Your "a" is √(25x^2) = 5x
Your "2ab" is -60x. Since you know "a", you can find "b".
2ab = -60x
2(5x)b = -60x . . . . . . . substitute for "a"
b = -60x/(10x) = -6
Then the missing term is b^2 = (-6)^2 = 36.
Your trinomial is ...
25x^2 -60x +<u>36</u>
Answer:
a. p1(x) = 2 - x
b. p2(x) = x² - 3*x + 3
c. p1(0.97) = 1.03; p2(0.97) = 1.0309
Step-by-step explanation:
f(x) = 1/x
f'(x) = -1/x²
f''(x) = 2/x³
a = 1
a. The linear approximating polynomial is:
p1(x) = f(a) + f'(a)*(x - a)
p1(x) = 1/1 + -1/1² * (x - 1)
p1(x) = 1 - x + 1
p1(x) = 2 - x
b. The quadratic approximating polynomial is:
p2(x) = p1(x) + 1/2 * f''(a)*(x - a)²
p2(x) = 2 - x + 1/2 * 2/1³ * (x - 1)²
p2(x) = 2 - x + (x - 1)²
p2(x) = 2 - x + x² - 2*x + 1
p2(x) = x² - 3*x + 3
c. approximate 1/0.97 using p1(x)
p1(0.97) = 2 - 0.97 = 1.03
approximate 1/0.97 using p2(x)
p2(0.97) = 0.97² - 3*0.97 + 3 = 1.0309