1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
14

Find a, b and h so that f(x)= asin(b(x-h)). Round to two decimal places if necessary.

Mathematics
1 answer:
Natali5045456 [20]3 years ago
6 0

Answer:

The answer is B

Step-by-step explanation:

I'm on edenuity too

You might be interested in
Function 1 is defined by the equation p= --3/2r - 5. function 2 is defined by the following table. Which function has a greater
Rus_ich [418]
0-5. Here’s your answer
6 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
What matrix results from −8·A?
djverab [1.8K]
Is that all the question says can you give it into more details


So I can help you out
3 0
3 years ago
The figure above shows a square inscribed in a rectangle.
Debora [2.8K]

Answer:

31 units ²

Step-by-step explanation:

Area of a rectangle = length × width

Length = 8 units

Width = 5 units

Area of a rectangle = length × width

= 8 units × 5 units

= 40 units ²

Area of of the blue square = length ²

Length = 3 units

Area of of the blue square = length ²

= (3 units) ²

= 9 units ²

Area of the orange colored part of the figure = Area of a rectangle - Area of of the blue square

= 40 units ² - 9 units ²

= 31 units ²

Area of the orange colored part of the figure = 31 units ²

6 0
3 years ago
1. What is the value of the y variable in the solution to the following system of equations?
ollegr [7]

Part 1)

we have

3x-6y=3 ------> equation A

7x-5y=-11 ------> equation B

Multiply by -7 the equation A

-7(3x-6y)=-7*3

-21x+42y=-21 ------> equation C

Multiply by 3 the equation B

3*(7x-5y)=-11*3

21x-15y=-33 -------> equation D

Adds equation C and equation D

-21x+42y=-21 \\21x-15y=-33\\---------- \\ 42y-15y=-21-33\\27y=-54 \\ y=-2

therefore

<u>the answer Part 1) is the option A </u>

y=-2

Part 2)

we have

3x+y=6

y=-3x+6 ------> equation A

6x+2y=8

Simplify Divide by 2 both sides

3x+y=4

y=-3x+4 ------> equation B

the lines A and B are parallel lines, because the slope m is equal

so

The system has no solution

therefore

<u>the answer Part 2) is the option D</u>

There is no x value as there is no solution to the system.

Part 3)

we have

4x+2y=6 ------> equation A

x-y=3

y=x-3  ------> equation B

substitute equation B in equation A

4x+2[x-3]=6

6x-6=6

6x=12

x=2

therefore

<u>the answer part 3) is the option D</u>

x=2

Part 4)

Let

x---------> The number of one-step equations

y---------> The number of two-step equations

we know that

x+y=1,120

x=1,120-y -------> equation A

3x-2y=1,300 ------> equation B

substitute equation A in equation B

3[1,120-y]-2y=1,300

3,360-5y=1,300

5y=3,360-1,300

5y=2,060

y=412

therefore

<u>the answer part 4) is  the option D</u>

y=412

8 0
3 years ago
Read 2 more answers
Other questions:
  • A spinner with 4 colors is spun for a total of 50 trials. Yellow was selected 10 times. What is the experimental probability of
    9·2 answers
  • Which of the following could be the graph of the line y=-3x-2?
    12·2 answers
  • You are planting a rectanglar garden. It's 5 feet longer than 3 times it's width. The area of the garden is 250 ft^2. Find the d
    14·1 answer
  • The sphere has a radius of 2. what is the volumes
    8·2 answers
  • Add. Your answer should be a polynomial in standard form. ( − 8 y 2 − 9 y ) + ( 8 y 3 + 9 y 2 − 2 y ) =
    13·1 answer
  • Not sure what the answer is hope an expert can help
    9·2 answers
  • What would be the anwser
    15·1 answer
  • Joseph rented a surf board for $5.25 per hour plus a $16.75 fee. Write an expression that shows how much it will cost josheph to
    6·1 answer
  • Find the missing point of the following parallelogram.
    6·2 answers
  • PLSSS HELPPP WILL GIVE BRAINIEST TO WHO GIVES THE CORRECT ANSWER Which table shows a proportional relationship between x and y?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!