The answer will be 2 cuz you multiply them at the answers
Step-by-step explanation:
the introduction of a fraction tells us that we are dealing with multiplications, and therefore a geometric sequence (where every new term is created by multiplying the previous term by a constant factor, the ratio r).
I think your teacher made a mistake, or you made one when typing the question in here.
there is no factor r that creates
15×r = 9
and
9×r = 5/27
it would mean that
15 × r² = 5/27
r² = 5/27 / 15 = 5/27 × 1/15 = 5/405 = 1/81
r = 1/9
but 15 × 1/9 = 5 × 1/3 = 5/3 is NOT 9
and 9 × 1/9 = 9/9 = 1 is NOT 5/27
so, this can't be right.
on the other hand
15 × r = 9
r = 9/15 = 3/5
and then
9 × 3/5 = 27/5
so, either the sequence should have been
15, 5/3, 5/27
or (and I suspect this to be true)
15, 9, 27/5
under that assumption we have
s1 = 15
r = 3/5
sn = sn-1 × r = s1 × r^(n-1) = 15 × (3/5)^(n-1)
s10 = 15 × (3/5)⁹ = 15 × 19683/1953125 =
= 3 × 19683/390625 = 59049/390625 =
= 0.15116544 ≈ 0.151
A function can be represented verbally. For example, the circumference of a square is four times one of its sides.
A function can be represented algebraically. For example, 3x+6 3 x + 6 .
A function can be represented numerically.
A function can be represented graphically.
Answer:
78 degrees
Step-by-step explanation:
If you look at it, 2 of the angels are the same- those angels are A and B- the angel we are looking for. Angel A is 78 degrees and if angel A and angel B are equal then angel B is also 78 degrees.
Answer:
Step-by-step explanation:
In order to determine the information you're being asked for, you need to complete the square on that quadratic. The first step is to move the constant over to the other side of the equals sign:

Here would be the step where, if the leading coefficient isn't a 1, you'd factor it out. But ours is a 1, so we're good there. Now take half the linear term (the term with the single x on it), square it, and add it to both sides. Our linear term is a -2. Half of -2 is -1, and -1 squared is +1. We add +1 to both sides giving us this:

Now we'll clean it up a bit. The right side becomes a 4, and the left side is written as its perfect square binomial, which is the whole reason we did this. That binomial is
(set equal to the 4 here). Now we'll move the 4 back over and set the whole thing back equal to y:

From this it's apparent what the vertex is: (1, -4),
the axis of symmetry is x = 1, and
the y-intercept is found by setting the x's equal to 0 in the original equation and solving for y. So the y-intercept is (0, -3).
Your choice for the correct answer is the very last one there.