x° + 90° + 52.6 = 180°
<em>because</em><em> </em><em>a</em><em> </em><em>triangle</em><em> </em><em>adds</em><em> </em><em>up</em><em> </em><em>to</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em>and </em><em>that</em><em> </em><em>spec</em><em>ific</em><em> </em><em>triangle</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>right</em><em> </em><em>angle </em><em>triangle</em><em> </em><em>which</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>it</em><em> </em><em>consist</em><em>s</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>adding</em><em> </em><em>up</em><em> </em><em>to</em><em> </em><em>9</em><em>0</em><em>°</em>
y=9
Step-by-step explanation:
y=2(6)-3
y=12-3
y=9
Answer:
5 * 2 is 10 + 5 and then 15 * 2 + 15 45 * 2 + 45
Step-by-step explanation:
times it by to add that number
Answer:
s = 22.5 m
Step-by-step explanation:
the equation for the speed change of a coach moving along a straight section of the road and starting braking at a speed of 20 m / s has the form v (t) = 25-5t. Using integral calculus, determine the coach's braking distance.
v (t) = 25 - 5 t
at t = 0 , v = 20 m/s
Let the distance is s.

Let at t = t, the v = 20
So,
20 = 25 - 5 t
t = 1 s
So, s = 25 x 1 - 2.5 x 1 = 22.5 m
Answer: a) The figure can be reasonably divided into two geometries:
• a rectangular prism
• a hemisphere.
b) The volume of the rectangular prism is given by
V = lwh
V = (10 cm)(5 cm)(4 cm) = 200 cm³
The volume of the hemisphere is given by
V = (2π/3)r³
V = (2π/3)(3 cm)³ = 18π cm³
c) The total volume of the figure is
total volume = (prism volume) + (hemisphere volume)
V = 200 cm³ + 18π cm³
V ≈ 256.549 cm³
Step-by-step explanation: