1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
12

Find the solutions to the quadratic. * y = (x + 13)(x - 21)

Mathematics
1 answer:
Vedmedyk [2.9K]3 years ago
6 0

Answer:

\huge\boxed{-13, 21}

Step-by-step explanation:

The most common way to solve for the roots of a polynomial is to use the Quadratic formula, which will return us with two values of x that make the equation equal 0.

...however, this form of the equation is already in root form. If we multiplied these two terms, we'd get x^2 - 8x -273, and when we factor that, we'd get -13 and 21.

Roots are usually written in the form (x-a)(x-b), where the zeroes will be the value of x that makes each binomial equal 0 - aka, the opposite of a and b.

The opposite of 13 is -13, and the opposite of -21 is 21.

Therefore, the solutions of this equation are -13 and 21.

Hope this helped!

You might be interested in
The parallelogram has a base of 8 cm and corresponding height of 4 cm. The parallelogram is changed proportionally and is dilate
sukhopar [10]

Answer:

The area of the new reduced parallelogram after dilation is 8 cm^2

Step-by-step explanation:

Mathematically, the area of a parallelogram = b * h

before dilation, area of the parallelogram = 8 * 4 = 32 cm^2

After dilation by a factor of 1/2, the base of the parallelogram becomes 1/2 * 8 = 4cm while the height becomes 1/2 * 4 = 2cm

Thus, the area of the dilated parallelogram is 4 * 2 = 8 cm^2

8 0
4 years ago
The standard equation of a circle with center (h.k) and radius r is (% - hy * (y - Ky = p. Which
zlopas [31]

Answer:

YOUR A DOG ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3 0
3 years ago
Y is such that 4y _ 7<= 3y and 3y <= 5y +8. What range of values of y satisfies both inequalities
fgiga [73]

Answer:

<h3>-4≤y≤7</h3>

Step-by-step explanation:

Given the inequality expressions

4y - 7 ≤ 3y and 3y≤5y+8

For 4y - 7 ≤ 3y

Collect like terms

4y - 3y ≤ 7

y ≤ 7

For  3y≤5y+8

Collect like terms

3y - 5y ≤ 8

-2y ≤ 8

y ≥ 8/-2

y ≥ -4

Combining both solutions

-4≤y≤7

<em>Hence the range of values of y that satisfies both inequalities is -4≤y≤7</em>

6 0
3 years ago
The mixed number 4 4/5 is equivalent to a fraction with a denominator of 5.
Komok [63]
D) 24 bc 5x4=20 20+4= 24 so 24
3 0
4 years ago
Read 2 more answers
6×(36÷12)^2+8=6×( )^2+8
Travka [436]
Not sure but i think the answer is
 0.28
3 0
3 years ago
Other questions:
  • What is the 17/5 as a mixed number in simplest form
    9·2 answers
  • 1/3 of 2 feet=(?)inches<br><br>1/6 of 3 yards=(?)inches<br><br>​
    11·1 answer
  • Simplify the expression −2.3(4.1a−1.7a)+1.9(−5.4b)
    15·1 answer
  • An suv goes 330 miles on 15 gallons of gas, what is the number of miles per gallon the suv gets?
    14·1 answer
  • A dolphin was swimming 4 feet below sea level. The number line shows the
    10·1 answer
  • What is step 10 in this proof
    12·1 answer
  • Define linear relationship​
    8·2 answers
  • What offer is the best price per square inch pizza?
    11·1 answer
  • Find the area and perimeter.
    9·1 answer
  • Compare the values.<br> 9 x 10^2 is<br> ?<br> times as much as 3 x 10^-2.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!