we have
y > -2
x + y < 4
using a graph tool
see the attached figure
The shaded area is the solution of the system
<u>Part 1) </u>Name an ordered pair that is a solution to this system and explain how you know that this is a solution point
Let
A ( -40,20)
The point A is solution of the system because the point lie on the shaded area
<u>Check</u>
If the point A is solution of the system must satisfy both system inequalities
point A
x=-40
y=20
substitute
y > -2-------> 20 > -2-------> is ok
x + y < 4----> -40+20 < 4-----> -20 < 4-----> is ok
therefore
<u>the answer Part 1) is</u>
The point A is a solution of the system
Part 2) Name an ordered pair that is not a solution to the system and explain how you know that it is not a solution
Let
B(20,20)
The point B is not solution of the system because the point not lie on the shaded area
<u>Check</u>
If the point B is not solution of the system must not satisfy both system inequalities
point B
x=20
y=20
substitute
y > -2 -------> 20 > -2-------> is ok
x + y < 4---->20+20 < 4-----> 40 < 4------> is not ok
therefore
<u>the answer part 2) is</u>
The point B is not a solution to the system
This was taken from a source, but I hope it helped out! Have a nice day :)
(The answer is in the bottom of the picture)
Answer:
X=1
This is correct due to basic algebra
Answer:
hi, how are you?
Step-by-step explanation:
thanks for the free points, btw :)
P(A|B)<span>P(A intersect B) = 0.2 = P( B intersect A)
</span>A) P(A intersect B) = <span>P(A|B)*P(B)
Replacing the known vallues:
0.2=</span><span>P(A|B)*0.5
Solving for </span><span>P(A|B):
0.2/0.5=</span><span>P(A|B)*0.5/0.5
0.4=</span><span>P(A|B)
</span><span>P(A|B)=0.4
</span>
B) P(B intersect A) = P(B|A)*P(A)
Replacing the known vallues:
0.2=P(B|A)*0.6
Solving for P(B|A):
0.2/0.6=P(B|A)*0.6/0.6
2/6=P(B|A)
1/3=P(B|A)
P(B|A)=1/3