Water is soluting the suger WATER
Answer
147.06N
Explanation:
MA=Load/Effort
6.8=1000/x
Finding x you make x the subject and divide 1000 by 6.8 which is 147.06N
Explanation:
The pH of a solution can you be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
Since we are finding the [H3O+] , substitute the value of the pH and find it's antilog
We have
![4.63 = - log[ { H_3O}^{+}] \\ [ { H_3O}^{+}] = {10}^{ - 4.63} \\ \\ = 2.344 \times {10}^{ - 5} mol {dm}^{ - 3}](https://tex.z-dn.net/?f=4.63%20%3D%20%20-%20%20log%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D%20%5C%5C%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D%20%20%20%3D%20%20%7B10%7D%5E%7B%20-%204.63%7D%20%20%5C%5C%20%20%20%5C%5C%20%20%3D%202.344%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%205%7D%20mol%20%7Bdm%7D%5E%7B%20-%203%7D%20%20)
Hope this helps you
Answer : The number of moles of sulfur needed to oxidize will be, 3 moles
Solution : Given,
Moles of zinc = 3 moles
The balanced reaction will be,

By the stoichiometry, 1 mole of
ion react with the 1 mole of
to give 1 mole of zinc sulfide.
From the balanced reaction, we conclude that
As, 1 mole of zinc react with 1 mole of sulfur
So, 3 moles if zinc react with 3 moles of sulfur
Hence, the number of moles of sulfur needed to oxidize will be, 3 moles
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.