when you are comparing 1/2 to 3/6. this is because you know that 1/2 is equal to 3/6. You are very welcome, and thank you for the challenge.
I think your supposed to add them all together or divide
Answer: the depth of the trench is 3685 ft
Step-by-step explanation:
The hole is approximately 347 yards wide. This means that the diameter of the hole is 347 yards.
The formula for determining the volume of a cylinder is expressed as
Volume = πr²h
Where
r represents the radius of the cylinder or hole.
h represents the height or depth of the cylinder or hole.
π is a constant whose value is 3.14
From the information given,
Volume = 348289500 ft³
Radius = diameter/2 = 347/2 = 173.5 ft
Therefore,
348289500 = 3.14 × 173.5² × h
348289500 = 94521.065h
h = 348289500/94521.065
h = 3685 feet
Answer:
El espesor de un chip es de 0.12mm
Y el diámetro de un átomo de cobre, mide aprox:
0.00000000133 m
Queremos saber cuantos átomos deberemos alinear de tal forma que la "cadena" de átomos de cobre mida 0.12mm
Eso es equivalente a ver cuantas veces entra 0.00000000133 m en 0.12mm
Primero, escribamos ambos valores en las mismas unidades, sabiendo que:
1m = 1000mm
Podemos reescribir:
0.00000000133m = 0.00000000133*(1000 mm) = 0.00000133mm
Entonces tenemos que ver cuantas veces entra 0.00000133mm en 0.12mm
Esto sera igual al cociente entre 0.12mm y 0.00000133mm, esto es:
N = (0.12mm)/(0.00000133mm) = 90,225.6
Redondeamos al próximo número entero:
N = 90,226
Esa es la cantidad de átomos que se necesitan.
Answer:
a). 0.294
b) 0.11
Step-by-step explanation:
From the given information:
the probability of the low risk = 0.60
the probability of the high risk = 0.40
let
represent no claim
let
represent 1 claim
let
represent 2 claim :
For low risk;
so,
= (0.80 * 0.60 = 0.48),
= (0.15* 0.60=0.09),
= (0.05 * 0.60=0.03)
For high risk:
= (0.50 * 0.40 = 0.2),
= (0.30 * 0.40 = 0.12) ,
= ( 0.20 * 0.40 = 0.08)
Therefore:
a), the probability that a randomly selected policyholder is high-risk and filed no claims can be computed as:




b) What is the probability that a randomly selected policyholder filed two claims?
the probability that a randomly selected policyholder be filled with two claims = 0.03 + 0.08
= 0.11