1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
4 years ago
13

HELPPPP!!!!!

Mathematics
2 answers:
Softa [21]4 years ago
8 0
15546.0 should be the answer
zheka24 [161]4 years ago
6 0

Answer:

15540.35

Step-by-step explanation:

12000 \times  {(1 + 9\%)}^{3}  = 15540.35

You might be interested in
What is bigger 9/2 or 8/3?
Sliva [168]
9/2 would be bigger than other 8/3

'cause we can either calculate it or can predict by the difference between numerator & denominator.

Hope it helped!
7 0
4 years ago
Express the following in scientific notation:<br> 1010.10
sveticcg [70]

Answer:

1.01010 x 10³. Might vary if it asks for specific significant figures.

8 0
3 years ago
Read 2 more answers
Which is the solution to the system of equations?
Svetlanka [38]

Answer:

D. (-1, 3/2)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Distributive Property

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

<u>Step 1: Define System</u>

4x + 2y = -1

3x + 4y = 3

<u>Step 2: Rewrite System</u>

4x + 2y = -1

  1. [Multiplication Property of Equality] Multiply -2 on both sides:                     -2(4x + 2y) = 2
  2. [Distributive Property] Distribute -2 on both sides:                                        -8x - 4y = 2

<u>Step 3: Redefine Systems</u>

-8x - 4y = 2

3x + 4y = 3

<u>Step 4: Solve for </u><em><u>x</u></em>

  1. Combine equations:                                                                                         -5x = 5
  2. [Division Property of Equality] Divide -5 on both sides:                                x = -1

<u>Step 5: Solve for </u><em><u>y</u></em>

  1. Substitute in <em>x</em> [Original Equation]:                                                                  3(-1) + 4y = 3
  2. Multiply:                                                                                                             -3 + 4y = 3
  3. [Addition Property of Equality] Add 3 on both sides:                                     4y = 6
  4. [Division Property of Equality] Divide 4 on both sides:                                  y = 3/2
8 0
3 years ago
Find the minimum and maximum of f(x,y,z)=x2+y2+z2 subject to two constraints, x+2y+z=7 and x−y=6.
sweet-ann [11.9K]
Use the method of Lagrange multipliers. We have Lagrangian

L(x,y,z,\lambda_1,\lambda_2)=x^2+y^2+z^2+\lambda_1(x+2y+z-7)+\lambda_2(x-y-6)

with partial derivatives (set equal to 0) of

L_x=2x+\lambda_1+\lambda_2=0
L_y=2y+2\lambda_1-\lambda_2=0
L_z=2z+\lambda_1=0
L_{\lambda_1}=x+2y+z-7=0
L_{\lambda_2}=x-y-6=0

As x+2y+z=7, and x-y=6, we can obtain

\dfrac12L_x+L_y+\dfrac12L_z=0\implies3\lambda_1-\dfrac12\lambda_2=-7
L_x-L_y=0\implies\lambda_1-2\lambda_2=12
\begin{cases}3\lambda_1-\frac12\lambda_2=-7\\\lambda_1-2\lambda_2=12\end{cases}\implies\lambda_1=-\dfrac{40}{11},\lambda_2=-\dfrac{86}{11}

From this, we find a single critical point:

2x-\dfrac{40}{11}-\dfrac{86}{11}=0\implies x=\dfrac{63}{11}
\dfrac{63}{11}-y=6\implies y=-\dfrac3{11}
\dfrac{63}{11}-\dfrac6{11}+z=7\implies z=\dfrac{20}{11}

At this point, we have a value of

f\left(\dfrac{63}{11},-\dfrac3{11},\dfrac{20}{11}\right)=\dfrac{398}{11}

To determine what kind of extremum occurs at this point, we check the Hessian of f(x,y,z):

\mathbf H(x,y,z)=\begin{bmatrix}f_{xx}&f_{xy}&f_{xz}\\f_{yx}&f_{yy}&f_{yz}\\f_{zx}&f_{zy}&f_{zz}\end{bmatrix}=\begin{bmatrix}2&0&0\\0&2&0\\0&0&2\end{bmatrix}

We observe that \det\mathbf H(x,y,z)=8>0 at any point (x,y,z), and that the eigenvalues of this matrix are all positive (2 with multiplicity 3), so \mathbf H is positive definite. By the second partial derivative test, this means f(x,y,z) attains a minimum at this critical point. Meanwhile, f has no maximum value.
5 0
3 years ago
Slove the expression
notka56 [123]
Expression solved ;)
6 0
3 years ago
Read 2 more answers
Other questions:
  • Given sin x =.1234, find x in degrees. Round your answer to the nearest tenth.
    7·1 answer
  • Solve for x: −1 x &gt; 8<br> −4 &gt; x &gt; 2
    10·1 answer
  • I need help with this
    14·1 answer
  • Mrs. Doubtfire is planning to place a fence around her backyard. The fencing costs $1.95 per yard. She buys f yards of fencing a
    8·1 answer
  • Factory2 + 5y +6.<br>(y + 2MY + 4)<br>(y + 1)x + 5)<br>(y + 2)(y + 3)<br>.............​
    14·1 answer
  • PLEASE HELP I'M CONFUSED! The measures of two adjacent angles have a ratio of 3:5. The sum of the measures of the two adjacent a
    5·2 answers
  • -6+(-2) pls help me.
    8·2 answers
  • Can we conclude that two similar figures can also be congruent figures? Explain.
    8·1 answer
  • What is the quotient of (x^3 + 8) divided by (x + 2)?
    6·1 answer
  • The endpoints of GH¯¯¯¯¯¯¯¯ are G(9,−6) and H(−1,8). Find the coordinates of the midpoint M. The coordinates of the midpoint M a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!