Answer:
The number in standard form is 233.64
Answer:
No, mn is not even if m and n are odd.
If m and n are odd, then mn is odd as well.
==================================================
Proof:
If m is odd, then it is in the form m = 2p+1, where p is some integer.
So if p = 0, then m = 1. If p = 1, then m = 3, and so on.
Similarly, if n is odd then n = 2q+1 for some integer q.
Multiply out m and n using the distribution rule
m*n = (2p+1)*(2q+1)
m*n = 2p(2q+1) + 1(2q+1)
m*n = 4pq+2p+2q+1
m*n = 2( 2pq+p+q) + 1
m*n = 2r + 1
note how I replaced the "2pq+p+q" portion with r. So I let r = 2pq+p+q, which is an integer.
The result 2r+1 is some other odd number as it fits the form 2*(integer)+1
Therefore, multiplying any two odd numbers will result in some other odd number.
------------------------
Examples:
- 3*5 = 15
- 7*9 = 63
- 11*15 = 165
- 9*3 = 27
So there is no way to have m*n be even if both m and n are odd.
The general rules are as follows
- odd * odd = odd
- even * odd = even
- even * even = even
The proof of the other two cases would follow a similar line of reasoning as shown above.
It is important to go through details that are provided in the question. Based on those details the answer to the question can be easily deduced.
Let us assume the number of lions at the zoo = x
Number of male lions in the zoo = 2
Then
(1/6) * x = 2
x/6 = 2
x = 2 * 6
= 12
So there are a total of 12 lions in the zoo. I hope the procedure is clear enough for you to understand. Using this method, it will be possible for you to do similar problems in future without requiring any help from outside. Only be careful about the calculation part.