Answer:
A) (-1,1) -----> The ordered pair is on the interior of the circle
B) (-2,1) -----> The ordered pair is on the circumference of the circle
C) (4,-8) -----> The ordered pair is on the exterior of the circle
Step-by-step explanation:
we know that
In this problem
1) If a ordered pair satisfy the equation ![x^{2} +y^{2}=5](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2By%5E%7B2%7D%3D5)
then
The ordered pair is on the circumference of the circle
2)If a ordered pair satisfy the inequality ![x^{2} +y^{2}>5](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2By%5E%7B2%7D%3E5)
then
The ordered pair is on the exterior of the circle
3)If a ordered pair satisfy the inequality ![x^{2} +y^{2}< 5](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2By%5E%7B2%7D%3C%205)
then
The ordered pair is on the interior of the circle
<u><em>Verify each case</em></u>
case A) (-1,1)
For x=-1, y=1
![-1^{2} +1^{2}=2](https://tex.z-dn.net/?f=-1%5E%7B2%7D%20%2B1%5E%7B2%7D%3D2)
so
therefore
A) (-1,1) -----> The ordered pair is on the interior of the circle
case B) (-2,1)
For x=-2, y=1
![-2^{2} +1^{2}=5](https://tex.z-dn.net/?f=-2%5E%7B2%7D%20%2B1%5E%7B2%7D%3D5)
so
therefore
B) (-2,1) -----> The ordered pair is on the circumference of the circle
case C) (4,-8)
For x=4, y=-8
![4^{2} + (-8)^{2}=80](https://tex.z-dn.net/?f=4%5E%7B2%7D%20%2B%20%28-8%29%5E%7B2%7D%3D80)
so
therefore
C) (4,-8) -----> The ordered pair is on the exterior of the circle