Answer:
∴ m∠KIJ = 18° and m∠HIJ = 50°
Thus, option a is correct.
Step-by-step explanation:
From the figure, it is clear that:
m∠KIH = m∠HIJ + m∠KIJ
Given
now substituting m∠KIH = 68°, m∠KIJ = (2x + 6)° and m∠HIJ = (9x - 4)° in the equation
m∠KIH = m∠HIJ + m∠KIJ
68° = (2x + 6)° + (9x - 4)°
switch sides

Group like terms


Subtract 2 from both sides

Simplify

Divide both sides by 11

Simplify

Hence, the value of x = 6
Therefore,
m∠KIJ = (2x + 6)° = 2(6) + 6 = 12 + 6 = 18°
m∠HIJ = (9x - 4)° = 9(6) - 4 = 54 - 4 = 50°
∴ m∠KIJ = 18° and m∠HIJ = 50°
Thus, option a is correct.