Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Answer:
1. Your answer would be C) 2√3-5√2.
2. Your answer would be -39.7i.
3. Your answer would be -1.
Step-by-step explanation:
9514 1404 393
Answer:
no, it is good for 2 weeks (almost 3)
Step-by-step explanation:
The volume of the pool is ...
V = LWH
V = (20 m)(8 m)(1.8 m) = 288 m³
Then the amount of chlorine powder needed for 1 week is ...
(300 g/(50 m³)) × (288 m³) = 1728 g
A box of 5000 g holds enough chlorine for ...
(5000 g)/(1728 g/treatment) = 2.89 treatments
A box of chlorine powder is enough for 2 weeks, not 4.
This is a direct variation
C = pi*d
pi is a constant and it does thru (0,0)