Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
Becuse the earth rotates the opisate way on the other side of the equator forgive me if im wrong.
Answer:
25.0 mL
Explanation:
1. Gather the information in one place.
MM: 98.00 74.09
2H3PO4 + 3Ca(OH)2 → Ca3(PO4)2 + 6H2O
m/g: 8.85 15.76
V/mL: 350.0 550
2. Moles of H3PO4
n = 8.85 g × (1 mol/98.00 g) = 0.09031 mol H3PO4
3. Moles of Ca(OH)2
n = 15.76 g × (1 mol/74.09 g) = 0.2126 mol Ca(OH)2
4. Moles of Ca(OH)2 in 25.0 mL Solution
n = 0.2126 mol × (25.0 mL/550 mL) = 0.009 663 mol Ca(OH)2
5. Moles of H3PO4 needed
From the balanced equation, the molar ratio is 2 mol H3PO4: 3 mol Ca(OH)2
n = 0.009 663 mol Ca(OH)2 × (2 mol H3PO4/3 mol Ca(OH)2)
= 0.006 442 mol H3PO4
6. Volume of H3PO4
V = 0.006 442 mol ×( 350.0 mL/0.09031 mol) = 25.0 mL H3PO4
It will take 25.0 mL of the H3PO4 solution to neutralize 25.0 mL of the Ca(OH)2 solution.
Answer:
The most abundant gas in the atmosphere is nitrogen, with oxygen second
Explanation:
moles NaOH = 5.20 g * 1 mol / 40.00 g = 0.13 mol
[NaOH] = n/V = 0.13 mol / 0.500L
= 0.26 M
The answer to this question is 0.26 M