Answer:
Fossil Fuels have the ability to pollute and trash our ecosystems. Its better for us to use clean and renewable energy too.
Explanation:
Answer:
d and e
Explanation:
We have 5 solutions with different molar concentrations, that is, the quotient between the number of moles of solute and the liters of solution. This can be expressed as mol/L or M. The most dilute would be the one having the less number of moles of solute per liters of solution, that is, solution d or e, which have the same concentration. If we order them from the most diluted to the most concentrated, we get:
d = e < a < b < c
Answer:
a= <em>In scientific notation</em>
6.96000×10⁵ Km
b =<em>In expanded notation</em>
0.00019 mm
Explanation:
Given data:
Radius of sun = 696000 Km
size of bacterial cell = 1.9 ×10⁻⁴ mm
Radius of sun in scientific notation = ?
Size of bacterial cell in expanded notation = ?
Solution:
Scientific notation is the way to express the large value in short form.
The number in scientific notation have two parts.
. The digits (decimal point will place after first digit)
× 10 ( the power which put the decimal point where it should be)
for example the number 6324.4 in scientific notation will be written as = 6.3244 × 10³
Radius of sun:
696000 Km
<em>In scientific notation</em>
6.96000 × 10⁵ Km
The expanded notation is standard notation of writing the numerical values which is normal way. The numbers are written as they are, without the power of 10.
Size of bacterial cell:
1.9 ×10⁻⁴ mm
<em>In expanded notation</em>
1.9/ 10000 = 0.00019 mm
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M