Answer:
12 possibilities
Step-by-step explanation:
In the first urn, we have 4 balls, and all of them are different, as they have different labels, so the group of two red balls r1 and r2 is different from the group of red balls r2 and r3.
The same thing occurs in the second urn, as all balls have different labels.
The problem is a combination problem (the group r1 and r2 is the same group r2 and r1).
For the first urn, we have a combination of 4 choose 2:
C(4,2) = 4!/2!*2! = 4*3*2/2*2 = 2*3 = 6 possibilities
For the second urn, we also have a combination of 4 choose 2, so 6 possibilities.
In total we have 6 + 6 = 12 possibilities.
Answer:
C. 
A. First Picture
Step-by-step explanation:
We are given the inequality,
.
On simplifying the inequality, we get,

i.e. 
i.e. 
i.e. 
So, we get the correct representations of the inequality are,
C. 
A. the First Picture
Answer:
school building, so the fourth side does not need Fencing. As shown below, one of the sides has length J.‘ (in meters}. Side along school building E (a) Find a function that gives the area A (I) of the playground {in square meters) in
terms or'x. 2 24(15): 320; - 2.x (b) What side length I gives the maximum area that the playground can have? Side length x : [1] meters (c) What is the maximum area that the playground can have? Maximum area: I: square meters
Step-by-step explanation:
Y = xe^x
dy/dx(e^x x)=>use the product rule, d/dx(u v) = v*(du)/(dx)+u*(dv)/(dx), where u = e^x and v = x:
= e^x (d/dx(x))+x (d/dx(e^x))
y' = e^x x+ e^x
y'(0) = 1 => slope of the tangent
slope of the normal = -1
y - 0 = -1(x - 0)
y = -x => normal at origin
Answer:
sorry but no one answered it sorry good lucked
Step-by-step explanation: