Step-by-step explanation:
part A:
![Area_{_{surface}}=3.14*(3*5+3^2);](https://tex.z-dn.net/?f=Area_%7B_%7Bsurface%7D%7D%3D3.14%2A%283%2A5%2B3%5E2%29%3B)
part B:
![Area_{_{surface}}=3.14*(15+9)=3.14*24=75.36[units^2].](https://tex.z-dn.net/?f=Area_%7B_%7Bsurface%7D%7D%3D3.14%2A%2815%2B9%29%3D3.14%2A24%3D75.36%5Bunits%5E2%5D.)
-- The area of the long skinny piece on top is (6 x 33) = 198
-- The length of the dotted line between the top and bottom pieces is (33-21) = 12
-- The area of the bottom piece is (12 x 15) = 180
-- The area of the whole thing is (198 + 180) = 378
-- The perimeter of the whole thing is (33 + 6 + 21 + 15 + 12 + 15 + 6) = 108
Answer:
x= - 9/28 ± √60/7
Step-by-step explanation:
Hi there! Use the following identities below to help with your problem.
![\large \boxed{sin \theta = tan \theta cos \theta} \\ \large \boxed{tan^{2} \theta + 1 = {sec}^{2} \theta}](https://tex.z-dn.net/?f=%20%5Clarge%20%5Cboxed%7Bsin%20%5Ctheta%20%3D%20tan%20%5Ctheta%20cos%20%5Ctheta%7D%20%5C%5C%20%20%5Clarge%20%5Cboxed%7Btan%5E%7B2%7D%20%20%5Ctheta%20%2B%201%20%3D%20%20%7Bsec%7D%5E%7B2%7D%20%5Ctheta%7D)
What we know is our tangent value. We are going to use the tan²θ+1 = sec²θ to find the value of cosθ. Substitute tanθ = 4 in the second identity.
![\large{ {4}^{2} + 1 = {sec}^{2} \theta } \\ \large{16 + 1 = {sec}^{2} \theta } \\ \large{ {sec}^{2} \theta = 17}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%7B4%7D%5E%7B2%7D%20%20%2B%201%20%3D%20%20%7Bsec%7D%5E%7B2%7D%20%5Ctheta%20%7D%20%5C%5C%20%20%5Clarge%7B16%20%2B%201%20%3D%20%20%7Bsec%7D%5E%7B2%7D%20%5Ctheta%20%7D%20%5C%5C%20%20%5Clarge%7B%20%7Bsec%7D%5E%7B2%7D%20%20%5Ctheta%20%3D%2017%7D)
As we know, sec²θ = 1/cos²θ.
![\large \boxed{sec \theta = \frac{1}{cos \theta} } \\ \large \boxed{ {sec}^{2} \theta = \frac{1}{ {cos}^{2} \theta} }](https://tex.z-dn.net/?f=%20%5Clarge%20%5Cboxed%7Bsec%20%5Ctheta%20%3D%20%20%20%5Cfrac%7B1%7D%7Bcos%20%5Ctheta%7D%20%7D%20%5C%5C%20%20%5Clarge%20%5Cboxed%7B%20%7Bsec%7D%5E%7B2%7D%20%20%5Ctheta%20%3D%20%20%5Cfrac%7B1%7D%7B%20%7Bcos%7D%5E%7B2%7D%20%20%5Ctheta%7D%20%7D)
And thus,
![\large{ {cos}^{2} \theta = \frac{1}{17}} \\ \large{cos \theta = \frac{ \sqrt{1} }{ \sqrt{17} } } \\ \large{cos \theta = \frac{1}{ \sqrt{17} } \longrightarrow \frac{ \sqrt{17} }{17} }](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%7Bcos%7D%5E%7B2%7D%20%20%5Ctheta%20%3D%20%20%5Cfrac%7B1%7D%7B17%7D%7D%20%20%20%5C%5C%20%5Clarge%7Bcos%20%5Ctheta%20%3D%20%20%5Cfrac%7B%20%5Csqrt%7B1%7D%20%7D%7B%20%5Csqrt%7B17%7D%20%7D%20%7D%20%5C%5C%20%20%5Clarge%7Bcos%20%5Ctheta%20%3D%20%20%5Cfrac%7B1%7D%7B%20%5Csqrt%7B17%7D%20%7D%20%20%5Clongrightarrow%20%20%5Cfrac%7B%20%5Csqrt%7B17%7D%20%7D%7B17%7D%20%7D)
Since the given domain is 180° < θ < 360°. Thus, the cosθ < 0.
![\large{cos \theta = \cancel\frac{ \sqrt{17} }{17} \longrightarrow cos \theta = - \frac{ \sqrt{17} }{17}}](https://tex.z-dn.net/?f=%20%5Clarge%7Bcos%20%5Ctheta%20%3D%20%20%20%5Ccancel%5Cfrac%7B%20%5Csqrt%7B17%7D%20%7D%7B17%7D%20%5Clongrightarrow%20cos%20%5Ctheta%20%3D%20%20-%20%20%5Cfrac%7B%20%5Csqrt%7B17%7D%20%7D%7B17%7D%7D)
Then use the Identity of sinθ = tanθcosθ to find the sinθ.
![\large{sin \theta = 4 \times ( - \frac{ \sqrt{17} }{17}) } \\ \large{sin \theta = - \frac{4 \sqrt{17} }{17} }](https://tex.z-dn.net/?f=%20%5Clarge%7Bsin%20%5Ctheta%20%3D%204%20%5Ctimes%20%28%20-%20%20%5Cfrac%7B%20%5Csqrt%7B17%7D%20%7D%7B17%7D%29%20%7D%20%5C%5C%20%20%5Clarge%7Bsin%20%5Ctheta%20%3D%20%20-%20%20%5Cfrac%7B4%20%5Csqrt%7B17%7D%20%7D%7B17%7D%20%7D)
Answer
- sinθ = -4sqrt(17)/17 or A choice.
Add all the chips to find the total amount.
7 + 9 + 3 + 6 = 25 chips
Since there are 6 blue chips (6/25), that's the probability of just getting once.
When you pick a blue chip and it doesn't get replaced, then that means there is one fewer blue chip and one fewer from the total amount.
5/24
Multiply both probabilities.
6/25 * 5/24 = 30/600
Simplify.
30/600 → 1/20
Therefore, the answer is B
Best of Luck!