Answer:
In 4 months the cost of both gyms will be the same.
Step-by-step explanation:
At first we need to model the function to calculate the cost of the 2 gyms.
Slope-intercept equation of linear function

where
slope of line
y-intercept
Let linear function to calculate total cost of gym be:

where
total cost of gym
cost per month (slope)
number of months
start-up fee (y-intercept)
For Gym 1
,

For Gym 2
,

In order to find the number of months the cost of both gyms will be the same, we need to equate both functions and solve for number of months 


So,
In 4 months the cost of both gyms will be the same.
200 divided by 5 equals 40.
So therefore, 40 times 5 equals 200.
solution:
Z1 = 5(cos25˚+isin25˚)
Z2 = 2(cos80˚+isin80˚)
Z1.Z2 = 5(cos25˚+isin25˚). 2(cos80˚+isin80˚)
Z1.Z2 = 10{(cos25˚cos80˚ + isin25˚cos80˚+i^2sin25˚sin80˚) }
Z1.Z2 =10{(cos25˚cos80˚- sin25˚sin80˚+ i(cos25˚sin80˚+sin25˚cos80˚))}
(i^2 = -1)
Cos(A+B) = cosAcosB – sinAsinB
Sin(A+B) = sinAcosB + cosAsinB
Z1.Z2 = 10(cos(25˚+80˚) +isin(25˚+80˚)
Z1.Z2 = 10(cos105˚+ isin105˚)
Answer:
Step-by-step explanation:
Our inequality is |125-u| ≤ 30. Let's separate this into two. Assuming that (125-u) is positive, we have 125-u ≤ 30, and if we assume that it's negative, we'd have -(125-u)≤30, or u-125≤30.
Therefore, we now have two inequalities to solve for:
125-u ≤ 30
u-125≤30
For the first one, we can subtract 125 and add u to both sides, resulting in
0 ≤ u-95, or 95≤u. Therefore, that is our first inequality.
The second one can be figured out by adding 125 to both sides, so u ≤ 155.
Remember that we took these two inequalities from an absolute value -- as a result, they BOTH must be true in order for the original inequality to be true. Therefore,
u ≥ 95
and
u ≤ 155
combine to be
95 ≤ u ≤ 155, or the 4th option