Answer:
The second classmate is right.
Explanation:
The height of first summit provides the potential energy it will use to climb the following ones.
Ep = m * g * h
Where
m: mass
g: acceleration of gravity
h: height
When the train goes downwards the potential energy is converted into kinetic energy (manifested as speed) and when it climbs it consumes its kinetical energy. As long as no summit is taller than the first the train should have enough energy to climb them.
Also it must be noted that friction also consumes energy, and if the track is too lomg all the energy might be consumed by it.
Answer:
BOD concentration at the outflow = 17.83 mg/L
Explanation:
given data
flow rate of Q = 4,000 m³/day
BOD1 concentration of Cin = 25 mg/L
volume of the pond = 20,000 m³
first-order rate constant equal = 0.25/day
to find out
What is the BOD concentration at the outflow of the pond
solution
first we find the detention time that is
detention time t = 
detention time t = 
detention time = 5 days
so
BOD concentration at the outflow of pond is express as
BOD concentration at the outflow = 
here k is first-order rate constant and t is detention time and Cin is BOD1 concentration
so
BOD concentration at the outflow = 
BOD concentration at the outflow = 17.83 mg/L
Answer:
Not possible.
Explanation:
According to second law of thermodynamics, the maximum efficiency any heat engine could achieve is Carnot Efficiency η defined by:

Where
and
are temperature (in Kelvin) of heat source and heatsink respectively
In our case (I will be using K = 273+°C) :

In percentage, this is 14.28% efficiency, which is the <em>maximum</em> theoretical efficiency <em>any</em> heat engine could have while working between -27 and 14 °C temperature. Any claim of more efficient heat engine between these 2 temperature are violates the second law of thermodynamics. Therefore, the claim must be false.
Answer:
a. Using a straight forward scheme, the RC4 algorithm stores 2064 bits in the interval state.
b. 1700 bits
Explanation:
See RC4 Algorithm attached with details