Check the picture below.
so the volume will simply be the area of the hexagonal face times the height.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\stackrel{\qquad degrees}{\cot\left( \frac{180}{n} \right)}~~ \begin{cases} n=\stackrel{number~of}{sides}\\ s=\stackrel{length~of}{side}\\[-0.5em] \hrulefill\\ n=6\\ s=12 \end{cases}\implies A=\cfrac{1}{4}(6)(12)^2\cot\left( \frac{180}{6} \right) \\\\\\ A=216\cot(30^o)\implies A=216\sqrt{3} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the hexagon}}{(216\sqrt{3})}~~\stackrel{height}{(10)}\implies 2160\sqrt{3}~~\approx ~~3741.2~cm^3](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Cstackrel%7B%5Cqquad%20degrees%7D%7B%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~~%20%5Cbegin%7Bcases%7D%20n%3D%5Cstackrel%7Bnumber~of%7D%7Bsides%7D%5C%5C%20s%3D%5Cstackrel%7Blength~of%7D%7Bside%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D6%5C%5C%20s%3D12%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%2812%29%5E2%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7B6%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20A%3D216%5Ccot%2830%5Eo%29%5Cimplies%20A%3D216%5Csqrt%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20hexagon%7D%7D%7B%28216%5Csqrt%7B3%7D%29%7D~~%5Cstackrel%7Bheight%7D%7B%2810%29%7D%5Cimplies%202160%5Csqrt%7B3%7D~~%5Capprox%20~~3741.2~cm%5E3)
115*20=2300.
50*5=250
First mechanic 20 hours
Second mechanic 5 hours
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, add 45 TO 45
The answer is 87
For this problem, the method I used was more of a guess and check because I simply plugged the options into a calculator to see which one would be closest a little bit past 9.3 but not all the way 9.4
the square root of 87 is 9.32 so you would round down while the square root of 88 is 9.38 which would round up
Hope this helps :)
180537.5 simplified is 180538