Answer:
it's 60 degree in my thinking
Step-by-step explanation:
hope this is the answer
You don't really have a picture wot anything to go by so i don't know
Answer:
Step-by-step explanation:
If you graph there would be two different regions. The first one would be

And the second one would be
.
If you rotate the first region around the "y" axis you get that

And if you rotate the second region around the "y" axis you get that

And the sum would be 2.51+4.188 = 6.698
If you revolve just the outer curve you get
If you rotate the first region around the x axis you get that

And if you rotate the second region around the x axis you get that

And the sum would be 1.5708+1.0472 = 2.618
False. Perpendicular lines run beside each other not through each other.
(a) From the histogram, you can see that there are 2 students with scores between 50 and 60; 3 between 60 and 70; 7 between 70 and 80; 9 between 80 and 90; and 1 between 90 and 100. So there are a total of 2 + 3 + 7 + 9 + 1 = 22 students.
(b) This is entirely up to whoever constructed the histogram to begin with... It's ambiguous as to which of the groups contains students with a score of exactly 60 - are they placed in the 50-60 group, or in the 60-70 group?
On the other hand, if a student gets a score of 100, then they would certainly be put in the 90-100 group. So for the sake of consistency, you should probably assume that the groups are assigned as follows:
50 ≤ score ≤ 60 ==> 50-60
60 < score ≤ 70 ==> 60-70
70 < score ≤ 80 ==> 70-80
80 < score ≤ 90 ==> 80-90
90 < score ≤ 100 ==> 90-100
Then a student who scored a 60 should be added to the 50-60 category.