Define
![{x} = \left[\begin{array}{ccc}x_{1}\\x_{2}\end{array}\right]](https://tex.z-dn.net/?f=%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%5C%5Cx_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20)
Then
x₁ = cos(t) x₁(0) + sin(t) x₂(0)
x₂ = -sin(t) x₁(0) + cos(t) x₂(0)
Differentiate to obtain
x₁' = -sin(t) x₁(0) + cos(t) x₂(0)
x₂' = -cos(t) x₁(0) - sin(t) x₂(0)
That is,
![\dot{x} = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right] x(0)](https://tex.z-dn.net/?f=%5Cdot%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20x%280%29)
Note that
![\left[\begin{array}{ccc}0&1\\-1&09\end{array}\right] \left[\begin{array}{ccc}cos(t)&sin(t)\\-sin(t)&cos(t)\end{array}\right] = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%2609%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28t%29%26sin%28t%29%5C%5C-sin%28t%29%26cos%28t%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20)
Therefore
Answer:
Range: 0.07
Median: 0.145
Mode: none
Step-by-step explanation:
<u>Range:</u> largest #- smallest #
<u>Median:</u> middle number (when numbers are in order least to greatest) or when two are middle number you add them, and divide by two
<u>Mode:</u> most occurring number(s) (if there aren't any, no mode)—but if there are multiples such as 2 zeros and 2 ones then 0 and 1 would be the mode
Answer:
2
Step-by-step explanation:
if you multiply 2 by 3=6
- 2×2=4
- 3×3=9
Answer:
YES! we conclude that f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
Step-by-step explanation:
Given
Given that the function f(x) and g(x) are inverse functions.


To determine
Let us determine whether f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
<u>Determining the inverse function of f(x) </u>
A function g is the inverse function of f if for y = f(x), x = g(y)

Replace x with y

Solve for y

Therefore,
YES! we conclude that f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
I think it’s y = 10x + 10