6p+p+2-3=8p-8
7p-1=8p-8
1=1p-8
7=1p
p=7
f(4)=9*4-2 =34 & g(4)= -2*4 =-8 then,
f(4)- g(4) = 34+8= 42
Answer: the distance from one corner of the field to the other corner is 136 m
Step-by-step explanation:
The distance from one corner to the other corner is the diagonal and it
divides the field into two equal right angle triangles. The diagonal represents the hypotenuse of each right angle triangle. The length and width of the rectangle represents the adjacent and opposite sides of the right angle triangle. To determine the length of the diagonal, d, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
Therefore
d² = 110² + 80²
d² = 12100 + 6400 = 18500
d = √18500
d = 136 meters
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
5 + 3p ≥ 30
Step-by-step explanation:
"at least" means greater than are equal to. ≥
So we already know he has 5 points, but the other 3 rounds we don't. 5 + 3p
30 is the overall points he has.
5 + 3p ≥ 30