Answer:
1. 15x^7y^2 + 4x^3 => x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x => 3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy => 3xy(5x^6y + 2)
4. 15x^7 + 10y^2 => 5(3x^7 + 2y^2)
Step-by-step explanation:
To obtain the answer to the question, first let us factorise each expression. This is illustrated below:
1. 15x^7y^2 + 4x^3
Common factor is x^3, therefore the expression is written as:
x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x
Common factor is 3x, therefore the expression is written as:
3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy
Common factor is 3xy, therefore the expression is written as:
3xy(5x^6y + 2)
4. 15x^7 + 10y^2
Common factor is 5, therefore the expression can be written as:
5(3x^7 + 2y^2)
Answer:
nothing much u
Step-by-step explanation:
You might want to see what other people say but I think that it is 40
Answer:
76
Step-by-step explanation:
take 88 and subtract twelve (for the 12 degree angle)
76 is your answer
Answer:
The side length of the large square is √2 times larger than the side length of the small square.
Step-by-step explanation:
Suppose we have a small square (square 1) and a large square (square 2). The area of the large square is twice that of the small square, that is,
A₂ = 2 A₁
A₂/A₁ = 2 [1]
The area of a square is equal to the length of the side (l) raised to the second power.
A = l²
l = √A
The ratio of l₂ to l₁ is:
l₂/l₁ = √A₂ / √A₁ = √(A₂/A₁)
We can replace [1] in the previous expression.
l₂/l₁ = √2
The side length of the large square is √2 times larger than the side length of the small square.