1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
3 years ago
10

Lisa has three classes that each last 50 minutes. What is the total number of minutes the three classes last?

Mathematics
2 answers:
sertanlavr [38]3 years ago
4 0
Its is 150 minutes bc  50 times 2 is 150
nikklg [1K]3 years ago
3 0
The total number of minutes for all casses is 150 minutes
You might be interested in
HELP ASSSAPPP WITH THIS QUESTION!!!
Gekata [30.6K]
D.d=24%
d.r=29%
d.t=53%
r.d=24%
r.r=24%
r.t=47%
t.d=47%
t.r=53%
t.t=100%
Just take the numbers and divide them over the total amount which in this caase is 51.
5 0
3 years ago
A windshield wiper blade turns through an angle of 135°. The bottom of the blade traces an arc with a 8-inch radius. The top of
tatiyna

Answer:142

2

+2

Step-by-step explanation:

4 0
3 years ago
The side adjacent to ∠W is …
-BARSIC- [3]

The side adjacent to ∠W is side WU.

7 0
2 years ago
Read 2 more answers
a coin will be tossed 10 times. Find the chance that there will be exactly 2 heads among the first five tosses and exactly 4 hea
777dan777 [17]

Answer:

The chance that there will be exactly 2 heads among the first five tosses and exactly 4 heads among the last 5 tosses is P=0.0488.

Step-by-step explanation:

To solve this problem we divide the tossing in two: the first 5 tosses and the last 5 tosses.

Both heads and tails have an individual probability p=0.5.

Then, both group of five tosses have the same binomial distribution: n=5, p=0.5.

The probability that k heads are in the sample is:

P(x=k)=\dbinom{n}{k}p^k(1-p)^{n-k}=\dbinom{5}{k}\cdot0.5^k\cdot0.5^{5-k}

Then, the probability that exactly 2 heads are among the first five tosses can be calculated as:

P(x=2)=\dbinom{5}{2}\cdot0.5^{2}\cdot0.5^{3}=10\cdot0.25\cdot0.125=0.3125\\\\\\

For the last five tosses, the probability that are exactly 4 heads is:

P(x=4)=\dbinom{5}{4}\cdot0.5^{4}\cdot0.5^{1}=5\cdot0.0625\cdot0.5=0.1563\\\\\\

Then, the probability that there will be exactly 2 heads among the first five tosses and exactly 4 heads among the last 5 tosses can be calculated multypling the probabilities of these two independent events:

P(H_1=2;H_2=4)=P(H_1=2)\cdot P(H_2=4)=0.3125\cdot0.1563=0.0488

7 0
3 years ago
Which of these expressions are equivalent to −5+(2.5+315)⋅4.25 ? Choose the TWO correct answers.
qaws [65]

Answer: A and D

Step-by-step explanation:because my teacher told me

4 0
3 years ago
Other questions:
  • The volume of a sphere is directly proportional to the cube of its diameter. The volume of a sphere with a diameter of 12 inches
    15·1 answer
  • No freeze antifreeze mixture contains 30% alcohol.how many alcohol is there in 15 quarts of no freeze?
    7·1 answer
  • Solve each inequality, -5/6y - 5 >/ 30
    5·1 answer
  • 7x-6=21+7x solve for x. ​
    8·1 answer
  • Julie has 9 carrots. Sam has 4 carrots. How many carrots do they have together?
    7·2 answers
  • The cost of a sapling of Mango, Jamun and Peepal is Rs 25, Rs 15 and Rs 10 each. The labour
    11·1 answer
  • HELP ASAP PLEASE!
    8·2 answers
  • Please help im stuck
    8·1 answer
  • I NEED HELP WITH THESE PLEASE
    7·1 answer
  • The U.S. government requires that all businesses reduce their energy consumption by
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!