Explanation: In my notes you’ll see the formula for how to find slope under “Formulas”.
How to use this formula: In the first graph you have points (2,3) and (6,8)
So y2 would be 8, and y1 would be 3.
x2 would be 6, and x1 would be 2.
1. Sub points into formula
2. subtract y2 by y1
3. Subtract x2 by x1
4. Divide top by bottom
And you’ve got your slope! (Rise/run)
If you need further clarification, feel free to ask me in the comments. Hope this helps :)
The volume of a cuboid is the product of its dimensions.
(9.4 cm)·(5.4 cm)·(11.7 cm) = 593.892 cm³ ≈ 593.9 cm³
You would plug in the probelm would be 3(30+8) = 2×30 -6
Problem 9
r+h = 9
SA = 2*pi*r^2 + 2*pi*r*h = 54pi
2*pi*r^2 + 2*pi*r*h = 54pi
2pi*r(r + h) = 54pi
r(r+h) = 27
r(9) = 27
9r = 27
r = 27/9
r = 3
r+h = 9
h = 9-r
h = 9-3
h = 6
Answers: r = 3 and h = 6 are the radius and height respectively.
==========================================================
Problem 10
d = diameter = 68 mm
r = radius = d/2 = 68/2 = 34 mm
SA = surface area of a sphere
SA = 4*pi*r^2
SA = 4*pi*34^2
SA = 4264pi
Answer: 4264pi square mm
==========================================================
Problem 11
Plug V = 3000 into the sphere volume formula and isolate r.
V = (4/3)pi*r^3
3000 = (4/3)pi*r^3
(4/3)pi*r^3 = 3000
4pi*r^3 = 3*3000
4pi*r^3 = 9000
r^3 = 9000/(4pi)
r = cube root( 9000/(4pi) )
r = ( 9000/(4pi) )^(1/3)
r = 8.947002 approximately
Now we can determine the surface area of this sphere.
SA = 4pi*r^2
SA = 4*pi*( 8.947002 )^2
SA = 1005.923451
Answer: 1005.923451 square feet approximately
==========================================================
Problem 12
We'll follow the same idea as problem 11, but in reverse.
SA = 4*pi*r^2
400pi = 4pi*r^2
r^2 = (400pi)/(4pi)
r^2 = 100
r = sqrt(100)
r = 10
Luckily we get a nice whole number for the radius r. Use it to find the volume.
V = (4/3)*pi*r^3
V = (4/3)*pi*10^3
V = (4000/3)pi
Answer: (4000/3)pi cubic inches exactly
==========================================================
Problem 13
The diagram is missing. I don't have enough info to be able to answer.