Step-by-step explanation:
câu trả lời là trong hình ảnh trên
Answer:
The value of the constant C is 0.01 .
Step-by-step explanation:
Given:
Suppose X, Y, and Z are random variables with the joint density function,

The value of constant C can be obtained as:



![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1z%7D%20%7D%7B0.1%7D%20%5D%5Climits%5E%5Cinfty__0%20%7D%29%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ]) } \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1%28%5Cinfty%29%7D%20%7D%7B0.1%7D%2B%5Cfrac%7Be%5E%7B-0.1%280%29%7D%20%7D%7B0.1%7D%20%5D%29%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}] } \, dy }) \, dx =1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%5B0%2B%5Cfrac%7B1%7D%7B0.1%7D%5D%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D1)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0 }) \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2y%7D%20%7D%7B0.2%7D%5D%5E%5Cinfty__0%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2%28%5Cinfty%29%7D%20%7D%7B0.2%7D%2B%5Cfrac%7Be%5E%7B-0.2%280%29%7D%20%7D%7B0.2%7D%5D%20%20%20%7D%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%5B0%2B%5Cfrac%7B1%7D%7B0.2%7D%5D%20%20%7D%20%5C%2C%20dx%20%3D%201)
![50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1](https://tex.z-dn.net/?f=50C%28%5B%5Cfrac%7B-e%5E%7B-0.5x%7D%20%7D%7B0.5%7D%5D%5E%5Cinfty__0%7D%29%20%3D%201)
![50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1](https://tex.z-dn.net/?f=50C%5B%5Cfrac%7B-e%5E%7B-0.5%28%5Cinfty%29%7D%20%7D%7B0.5%7D%20%2B%20%5Cfrac%7B-0.5%280%29%7D%7B0.5%7D%5D%20%3D1)
![50C[0+\frac{1}{0.5} ] =1](https://tex.z-dn.net/?f=50C%5B0%2B%5Cfrac%7B1%7D%7B0.5%7D%20%5D%20%3D1)
⇒ 
C = 0.01
We need a least common denominator
19 1/8 and 2 1/4 (also = to 2 2/8)
19 1/8-2 2/8= 16 7/8
16 7/8 divided by 5
ANSWER: 3 3/8 in
250 lunches are produced by the small business in last week.
<u>Step-by-step explanation:</u>
It is given that,
- y ⇒ the average cost per week.
- x ⇒ the number of lunches produced per week.
The function relating these two factors x and y is given as y = 2.1x + 75
- The cost of the last week is y = $600.
- The lunches made last week is x = unknown.
<u>To find the value of x :</u>
Substitute y= 600 in the given function,
⇒ 600 = 2.1x + 75
⇒ 2.1x = 600 - 75
⇒ x = 525 / 2.1
⇒ x = 250
Therefore, the lunches prepared last week is 250.
Answer:
Adjacent
Step-by-step explanation: