First we have to find out the gravity on that planet. We use Newton second equation of motion. It is given as,
s = ut +(gt^2)/2
Distance s = 25m
Time t = 5 s
Velocity u = 0
By putting these values,
25 = 1/2.g.(5)²
g = 2
So the gravity on that planet is 2. Lets find out the weight of the astronaut.
Mass of the astronaut on earth m = 80 kg
Weight of astronaut on earth W = mg = (80)(9.8) = 784 N
Weight of astronaut on earth like planet = (80)(2) = 160 N
x = 160N
Answer:
9.17 m/s^2
Explanation:
Formula for force is given by
F = m*a
where F is the force in newton
m is the mass of body in KG
and
a is the acceleration of body on m/s^2
_______________________________________________
Given
F = 11,000
mass = 1,200 Kg
we have to find value of acceleration
using
F = m*a
11,000 = 1200*a
=> a = 11,000 /1200 = 9.17
Thus, the acceleration of a car is 9.17 meter per second square
Answer:
13.1 m/s
Explanation:
Given that a baseball is tossed up into the air at an initial velocity 18 m/s. The height of the baseball at time t in seconds is given by h(t) = 18t−4.9t 2 (in meters).
a) What is the average velocity for [1,1.5]?
To calculate the velocity travelled by the ball, differentiate the function.
dh/dt = 18 - 9.8t
Substitute t for 1 in the above Differential function
dh/dt = 18 - 9.8 (1)
But dh/dt = velocity
V = 18 - 9.8
V = 8.2 m/s
Average velocity = ( U + V ) / 2
Average velocity = (18 + 8.2)/2
Average velocity = 26.2/2
Average velocity = 13.1 m/s
Answer:
the average speed in annual work out is 46.5
Answer:
Two estimates
Explanation:
There are mainly two estimates used in the calculation of depreciation such as the useful life and the salvage value of an asset. The salvage value is defined as the predicted amount that will be obtained by a company from an asset when it is disposed at the end of the useful life of the particular asset. On the other hand, the useful life commonly refers to the estimation of how long the asset is useful for the company. This is different from the lifespan of the asset.