Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )


Answer:
A black hole is a region of space having a gravitational field so intense that no matter or radiation can escape.
Explanation:
Sorry if this isn't what you meant or were looking for.
Answer:
12N to the right.
Explanation:
There is a force of 12N upwards and a force of 12N downwards: these cancel out.
Assign a negative value to forces towards the left, and a positive value to the forces towards the right: -3N and +15N
Combine them: -3N+15N = 12N
The net force has a magnitude of 12N, and since our answer was positive, it acts towards the right.
Answer:
B. Attract each other with a force of 10 newtons.
Explanation:
Statement is incorrectly written. <em>The correct form is: A </em>
<em> charge and a </em>
<em> at a distance of 0.3 meters. </em>
The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:
(1)
Where:
- Electrostatic force, in newtons.
- Electrostatic constant, in newton-square meters per square coulomb.
- Magnitudes of electric charges, in coulombs.
- Distance between charges, in meters.
If we know that
,
and
, then the magnitude of the electrostatic force is:


In consequence, correct answer is B.