<span>During a medical evaluation, the doctor can D. all of the above. It is the doctor's duty to do all of these things - to establish some guidelines for activities, to see whether these programs are appropriate for the person in question, and to help them pick activities that will be safe for them and which they will be able to do without harming their bodies. These are all the things that doctors do in order to help their patients lead a safe and healthy life.</span>
Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Answer:

Explanation:
h = Planck's constant = 
m = Mass of electron = 
k = Coulomb constant = 
e = Charge of electron = 
n = 1 (ground state)
Angular momentum is given by

From Bohr's atomic model we have


The centripetal force will balance the electrostatic force

The diameter is 
<span>The difference between a internal combustion engine and a diesel engine is the ignition, But a Diesel engine is an internal combustion engine. The both burn internal one uses compression to fire the other uses ignition system.</span>