19. (X+5)-3
20. 2a
21.3b
22. 5y-5
23. 1/2n-15
Answer:

Step-by-step explanation:
This problem can be solved by using the expression for the Volume of a solid with the washer method
![V=\pi \int \limit_a^b[R(x)^2-r(x)^2]dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_a%5Eb%5BR%28x%29%5E2-r%28x%29%5E2%5Ddx)
where R and r are the functions f and g respectively (f for the upper bound of the region and r for the lower bound).
Before we have to compute the limits of the integral. We can do that by taking f=g, that is

there are two point of intersection (that have been calculated with a software program as Wolfram alpha, because there is no way to solve analiticaly)
x1=0.14
x2=8.21
and because the revolution is around y=-5 we have

and by replacing in the integral we have
![V=\pi \int \limit_{x1}^{x2}[(lnx+5)^2-(\frac{1}{2}x+3)^2]dx\\](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_%7Bx1%7D%5E%7Bx2%7D%5B%28lnx%2B5%29%5E2-%28%5Cfrac%7B1%7D%7B2%7Dx%2B3%29%5E2%5Ddx%5C%5C)
and by evaluating in the limits we have

Hope this helps
regards
Answer:
2 5/6
Step-by-step explanation:
9 5/12 - 6 7/12
We will need to borrow from the 9
8 12/12 + 5/12 - 6 7/12
8 17/12 - 6 7/12
(8-6) + (17/12 -7/12)
2 10/12
This simplifies. Divide the top and bottom of the fraction by 2
2 5/6
Answer:
La cantidad de dinero adeuda al final de los dos procesos es $1450
Step-by-step explanation:
Los parámetros del proceso son;
La cantidad ahorrada para comprar ropa = $2,000
La cantidad pagada por la ropa = $2600
La cantidad prestada a un amigo = $650
La cantidad adeuda por teléfono celular durante 3 meses = $250
Deje que 'C', represente la suma de las transacciones anteriores, tenemos;
∴ C = 2,000 - 2,600 - 650 - 200 = -1,450
La suma de las transacciones anteriores, C = -$1,450
Por lo tanto, al final de los dos procesos, la cantidad de dinero adeuda es C = $1,450
-
144, cause each child gets a chocolate and a fruit candy