Answer: Water because if we say aqueous it means it resembles water or related to water.
Answer:
12.0108408
Explanation:
Denote the element with a letter like say X. Since it has a subscript of 5, then, X5.
Molecular mass=102.133g/mol.
% of X in compound =58.8/100
=0.588
Mass of X in the compound = 0.588*102.133 ( the % of X in compound * molar mass of compound)
= 60.054204
X5=60.054204
Then element X has a mass of 60.054204/5=12.0108408
Talc is not a good choice when building a statue because the mineral Talc is one of the weakest minerals on the Mohs Scale with a hardness of 1 since it could be scratched by a fingernail, which means that when people build a statue with Talc, it could be easily broken down.
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.
<h3>Answer:</h3><h3>1865.5g</h3><h3>Explanation:</h3><h3 /><h2> first the chemical formular for ammonium hydroxide is NH4OH</h2><h3>its molarmass is given as N=14H=1O=16 </h3><h3> so we have 14 +1(2) +16+1 =35</h3><h2>also no of moles = mass / molarmass</h2><h3> we have 5.33×10 = mass/35 </h3><h2>therefore mass = 35 ×5.33×10 = 1865.5g</h2>