In diethyl ether, (CH₃)₂Mg(CH₃)₂Mg, show peaks at -1.46 and -1.74 ppm, at -100 °C
In tetrahydrofuran (THF), monomer (CH₃)₂Mg show peaks at -1.76 and -1.81 ppm, at -60 °C
Explanation:
The 1H NMR signal of (CH₃)₂Mg can be obtained in diethyl ether and tetrahydrofuran. (CH₃)₂Mg tends to polymerize in diethyl ether but mostly remain monomer in tetrahydrofuran. The negative value of chemical shifts shows that the protons of (CH₃)₂Mg are more shielded than the protons of TMS.
In diethyl ether, the structure of (CH₃)₂Mg is predicted in Figure A (attached). The A group in the structure represents the solvent. The chemical shift at -1.46 ppm is associated with protons of the bridging methyl groups while the signal at -1.74 ppm is for the proton of the terminal methyl group.
In THF, the two possible structures of (CH₃)₂Mg are predicted in Figure B (attached). Chemical shift at -1.76 ppm is associated with unsolvated monomer of (CH₃)₂Mg while the shift at -1.81 refers to the protons of methyl group bonded to the solvated (CH₃)₂Mg. The solvent is represented as Y in the Figure B.
This study is reported by J. Heard in "NMR of organomagnessium compounds".
The most accurate way to determine an object's volume, especially in the case of an irregularly shaped object, is to immerse it in water and measure the amount of water it displaces. A graduated cylinder large enough to hold both the object and enough water to fully immerse it is the best tool for this job.