Answer: 97.2223 ml
Explanation:
The rule that we will use to solve this problem is:
M2*V1 = M2*V2 where:
M1 is the initial concentration = 3.5 m
V1 is the initial volume = 0.25 l = 250 ml
M2 is the final concentration = 9 m
V2 is the final volume that we need to find
Substitute with the givens in the above equation to get V2 as follows:
3.5*250 = 9*V2
V2 = <em><u>97.2223 ml</u></em>
Answer:
A. True
B. True
C. False
D. False
Explanation:
Electrons travel around the nucleus in circular orbits and moves from one orbit to another orbit when they absorb energy or lose energy. The Bohr atom is the model currently accepted for electrons in atoms because this model provides the right information about presence of electrons around the orbits. Scientists know the energies of electrons as well as the areas (orbitals) where the electrons are probably located with the help of new technology.
Answer:
Let me know what is your questions!!
<h2>Answer:</h2>
The correct answer is the option A which is: Cl2 + 2e- → 2Cl-
<h3>Explanation:</h3>
<em><u>Reduction is the gain of electrons and resulting in neutral or negative ions.</u></em>
<em><u>It is also the gain of hydrogen and release of oxygen ions.</u></em>
- According to first most definition, option A describes the reduction.
- Option B is incomplete reaction.
- While C and D are oxidation reactions.
<span>1.15x10^24 molecules of hypothetical substance b
Making the assumption that each molecule in hypothetical substance a reacts to produce a single molecule of hypothetical substance b, then the number of molecules of substance b will be the number of moles of substance a multiplied by avogadro's number. So
Moles hypothetical substance a = 29.9 g / 15.7 g/mol = 1.904458599 moles
This means that we should also have 1.904458599 moles of hypothetical substance b. And to get the number of atoms, multiply by 6.0221409x10^23, so:
1.904458599 * 6.0221409x10^23 = 1.146892x10^24 molecules.
Rounding to 3 significant figures gives 1.15x10^24</span>