Answer: none
Explanation: there is no picture attached
<h3><u>Answer;</u></h3>
A) HNO3 and NO3^-
<h3><u>Explanation;</u></h3>
- <em><u>HNO3 is a strong acid and NO3 is its conjugate base, meaning it will not have any tendency to withdraw H+ from solution.</u></em>
- Buffers are often prepared by mixing a weak acid or base with a salt of that weak acid or base.
- The buffers resist changes in pH since they contain acids to neutralize OH- and a base to neutralize H+. Acid and base can not consume each other in neutralization reaction.
Answer:
46.96 amu
Explanation:
Isotopes are different kinds of same elements. The difference between two isotopes of the same element is the number of neutrons.
To get the relative atomic mass, we take into consideration the masses of the different isotopes. This is done by multiplying their abundances by their masses. They are then added together to get the relative atomic mass of the element.
Let the isotopic mass of 47Z be x
45.36 = [80/100 * 44.96] + [20/100 * x]
45.36 = 35.968 + 0.2x
0.2x = 45.36 - 35.968
0.2x = 9.392
x =9.392/0.2 = 46.96 amu
Visible photon has more energy than a microwave photon. A microwave oven pumps out 1,000 watts of energy or more by generating a whole bunch of photons. Your conventional oven actually puts out even more energy (3,000 watts for an electric, 5,000 for gas). Most of that is infrared, which has less energy than visible light but more than a microwave.Thus the answer is <span>shorter than visible light.</span>