Answer:
Speed per second= 7.5 feet per second
Step-by-step explanation:
Giving the following information:
We have a distance (225 feet), and a time (30 seconds). Also, we know that the speed was constant.
<u>All we have to do is divide the distance by the time and determine the speed per second:</u>
Speed per second= distance / time
Speed per second= 225 / 30
Speed per second= 7.5 feet per second
Answer:
10 Numbers
Step-by-step explanation:
Answer:
24° and 66°
Step-by-step explanation:
Angle 1 = x
Angle 2 = x + 42°
x + x + 42° = 90°
Subtract 42° from both sides and add
2x = 48°
Divide by 2
x = 24°
24° and 66°
Hope this was useful to you!
Answer:
"A" IS THE ANSWER
Step-by-step explanation:
My answer -
<span>1. Use symbols (not words) to express quotient
2. Use exponent symbol (^) to denote exponents
3. Just write out question number, question, and choices. No need for
extra information (such as points). Also, don't leave blank lines
between choices. This extraneous that we don't need just makes your
whole question very very long, and means a lot of scrolling on our part.
4. You should only post 2 or 3 questions at a time.
1) (6x^3 − 18x^2 − 12x) / (−6x) = −x^2 + 3x + 2 ----> so much simpler to read !
2) (d^7 g^13) / (d^2 g^7) = d^(7−2) g^(13−7) = d^5 g^6 ----> much easier to read !
3) (4x − 6)^2 = 16x^2 − 24x − 24x + 36 = 16x^2 − 48x + 36
4) (x^2 / y^5)^4 = (x^2)^4 / (y^5)^4 = x^8 / y^20
5) (3x + 5y)(4x − 3y) = 12x^2 − 9xy + 20xy − 15y^2 = 12x^2 + 11xy − 15y^2
6) (3x^3y^4z^4)(2x^3y^4z^2) = (3*2) x^(3+3) y^(4+4) z^(4+2) = 6 x^6 y^8 z^6
7) 5x + 3x^4 − 7x^3 ----> Fourth degree trinomial
8) (5x^3 − 5x − 8) + (2x^3 + 4x + 2) = 7x^3 − x − 6
9) (x − 1) + (2x + 5) − (x + 3) = x + 1
10) (−4g^8h^5k^2)0(hk^2)^2 = 0 (anything multiplied by 0 = 0)
or.. (−4g^8h^5k^2)^0(hk^2)^2 = 1 (h^2 (k^2)^2) = h^2 k^4
Last question shows why it is so important to use proper symbols (such
as ^ to indicate exponents). Without such symbols, I could not tell if
the 0 was an actual number and part of multiplication, of if 0 was an
exponent of the expression preceding it.
P.S
Glad to help you have an AWESOME!!! day :)
</span>