Answer:
The price: 16.5
The total payment: 18.82
=> The amount of tax: 18.82-16.5 = 2.32
=> Tax rate = The amount of tax / The price = 2.32/16.5 = 0.14 = 14%
Answer:
<h2>88 cars</h2><h2>132 trucks</h2>
Step-by-step explanation:
This is a ratio problem, the ratio of cars to trucks
for every 4 cars, there are 6 trucks
represented as a ratio we have 4:6
1. how many of them are cars
applying the part to whole strategy we have
4+6 = 10
let cars be x

2. how many of them are trucks?
let trucks be y

Answer:
-sinx
Step-by-step explanation:
a trig identity that is crucial to solving this problem is: sin^2 + cos^2 = 1
with knowing that, you can manipulate that and turn it into 1 - sin^2x = cos^x
so 1-sin^2x/sinx - cscx becomes cos^2x/sinx - cscx
it is also important to know that cscx is the same thing as 1/sinx
knowing this information, cscx can be replaced with 1/sinx
(cos^2x)/(sinx - 1/sinx)
now sinx and 1/sinx do not have the same denominator, so we need to multiply top and bottom of sinx by sinx; it becomes....
cos^2x
---------------------
(sin^2x - 1)/sinx
notice how in the denominator it has sin^2x-1 which is equal to -cos^2x
so now it becomes:
cos^2x
--------------
-cos^2x/sinx
because we have a fraction over a fraction, we need to flip it
cos^2x sinx
---------- * ----------------
1 - cos^2x
because the cos^2x can cancel out, it becomes 1
now the answer is -sinx
4*4-5*3-2x+6= -x-7/2 slope = 2
3 * 3 - 4 *2 -2x +1= - x - 2/2 slope = -2
2 + -2 = 0
Answer:
The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
10% of all resistors having a resistance exceeding 10.634 ohms
This means that when X = 10.634, Z has a pvalue of 1-0.1 = 0.9. So when X = 10.634, Z = 1.28.




5% having a resistance smaller than 9.7565 ohms.
This means that when X = 9.7565, Z has a pvalue of 0.05. So when X = 9.7565, Z = -1.96.




We also have that:

So





The mean is

The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.