Factor:
3x^2 + 27
= 3(x^2 + 9)
Answer is 3(x^2 + 9), when factored.
A) (3x + 9i)(x + 3i)
= (3x + 9i)(x + 3i)
= (3x)(x) + (3x)(3i) + (9i)(x) + (9i)(3i)
= 3x^2 + 9ix + 9ix + 27i^2
= 27i^2 + 18ix + 3x^2
B) (3x - 9i)(x + 3i)
= (3x + - 9i)(x + 3i)
= (3x)(x) + (3x)(3i) + ( - 9i)(x) + (- 9i)(3i)
= 3x^2 + 9ix - 9ix - 27i^2
= 27i^2 + 3x^2
C) (3x - 6i)(x + 21i)
= (3x + - 6i)(x + 21i)
= (3x)(x) + (3x)(21i) + (- 6i)(x) + ( -6i)(21i)
= 3x^2 + 63ix - 6ix - 126i^2
= - 126i^2 + 57ix + 3x^2
D) (3x - 9i)(x - 3i)
= (3x + - 9)(x + - 3)
= (3x)(x) + (3x)( - 3i) + (- 9)(x) + ( - 9)( - 3i)
= 3x^2 - 9ix - 9x + 27i
= 9ix + 3x^2 + 27i - 9x
Hope that helps!!!
The sum of all the angles on one side of a straight line is always 180 degrees. For example: The sum of ∠1, ∠2, and ∠3 is 180 degrees
9*13=117
12*16=192
We increased three meters to both the length and width of the garden.
Answer:
ab
Step-by-step explanation: